organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-{5-Amino-3-tert-butyl-4-[(E)-(3-methyl-1.2.4-thiadiazol-5-vl)diazenvl]-1Hpyrazol-1-yl}-1,3,5-triazine-2,4(1H,3H)dione-1-methylpyrrolidin-2-one-water (1/1/1)

Hiroki Shibata and Iin Mizuguchi*

Department of Applied Physics, Graduate School of Engineering, Yokohama National University, Tokiwadai 79-5, Hodogaya-ku, Yokohama 240-8501, Japan Correspondence e-mail: mizu-j@ynu.ac.jp

Received 18 March 2010; accepted 23 March 2010

Key indicators: single-crystal X-ray study; T = 93 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.049; wR factor = 0.150; data-to-parameter ratio = 11.5

In the title compound, $C_{13}H_{16}N_{10}O_2S \cdot C_5H_9NO \cdot H_2O$, the entire 1-methylpyrrolidin-2-one (NMP) molecule is disordered over two sites with occupancies of 0.488 (5) and 0.512 (5). The six-membered triazine ring and the two fivemembered pyrazole and thiadiazole rings, together with the diazene (-N=N-) linkage are almost coplanar (r.m.s. deviation for the non-H atoms = 0.0256 Å) with methyl groups from the tert-butyl substituent on the pyrazole ring located above and below the plane. Three intramolecular $N-H \cdots N$ hydrogen bonds contribute to the planarity of the system. The O atom of the NMP molecule is hydrogen bonded to an O-H group of water. In turn, the water molecule is hydrogen bonded to the mono-azo skeleton through intermolecular N- $H \cdots O$ and $O - H \cdots N$ hydrogen bonds. At both ends of the long molecular axis of the main molecule there are intermolecular N-H···N hydrogen bonds, arranged in a head-totail fashion, between the N-H group of the triazine ring of one molecule and the N atom of the thiadiazole ring of a neighboring molecule. These form a polymeric chain along [110] or $[1\overline{10}]$. The main molecules are stacked alternately along the b axis, which effectively cancels their dipole moments. In addition, pairs of alternate molecules are dimerized via intermolecular hydrogen bonds involving the solvent molecules.

Related literature

For details of azo pigments, see: Herbst & Hunger (2004). For the structure of the Na(I) complex of the related bis-azo compound, see: Shibata & Mizuguchi (2010). For the synthesis of the title compound, see: Nagata & Tateishi (2009).

 $V = 4582.69 (13) \text{ Å}^3$

 $0.50 \times 0.10 \times 0.10$ mm

3977 measured reflections

3977 independent reflections 3083 reflections with $F^2 > 2\sigma(F^2)$

Cu Ka radiation

 $\mu = 1.70 \text{ mm}^{-1}$

T = 93 K

Z = 8

Experimental

Crystal data

 $C_{13}H_{16}N_{10}O_2S \cdot C_5H_9NO \cdot H_2O$ $M_r = 493.54$ Monoclinic, C2/c a = 27.8283 (5) Åb = 7.0269 (1) Åc = 23.4417 (4) Å $\beta = 91.3430(7)^{\circ}$

Data collection

Rigaku R-AXIS RAPID diffractometer Absorption correction: multi-scan (ABSCOR; Higashi, 1995) $T_{\min} = 0.529, \ \bar{T}_{\max} = 0.844$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	84 restraints
$wR(F^2) = 0.150$	H-atom parameters constrained
S = 1.13	$\Delta \rho_{\rm max} = 0.39 \text{ e} \text{ Å}^{-3}$
3977 reflections	$\Delta \rho_{\rm min} = -0.35 \text{ e} \text{ Å}^{-3}$
347 parameters	

Table 1

Hydrogen-bond geometry (Å, °).

D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
0.90	2.19	3.087 (4)	176
0.90	1.87	2.752 (4)	166
0.90	2.70	3.104 (2)	109
0.90	2.25	3.100 (2)	159
0.88	2.07	2.947 (2)	176
0.88	2.27	2.654 (2)	106
0.88	1.95	2.778 (4)	157
0.88	2.01	2.766 (4)	143
0.88	2.11	2.727 (2)	126
0.88	2.19	3.002 (2)	154
0.88	2.28	2.804 (2)	119
	<i>D</i> -H 0.90 0.90 0.90 0.88 0.88 0.88 0.88 0.88	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

Symmetry codes: (i) $x + \frac{1}{2}$, $y - \frac{1}{2}$, z; (ii) $-x + \frac{1}{2}$, $-y + \frac{1}{2}$, -z + 1.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: CrystalStructure (Rigaku/ MSC & Rigaku, 2006); program(s) used to solve structure: SIR2004 (Burla et al., 2005); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEPIII (Burnett & Johnson, 1996); software used to prepare material for publication: CrystalStructure (Rigaku/MSC & Rigaku, 2006).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2752).

References

- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G. & Spagna, R. (2005). J. Appl. Cryst. 38, 381-388.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. OakRidge National Laboratory. Tennessee, USA.
- Herbst, W. & Hunger, K. (2004). Industrial Organic Pigments, 3rd ed. Weinheim: VCH.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Nagata, Y. & Tateishi, K. (2009). Jpn Patent 2009-73978 A.
- Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC and Rigaku (2006). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Shibata, H. & Mizuguchi, J. (2010). Acta Cryst. E66, m463-m464.

Acta Cryst. (2010). E66, o944-o945 [doi:10.1107/S1600536810010871]

6-{5-Amino-3-*tert*-butyl-4-[(*E*)-(3-methyl-1,2,4-thiadiazol-5-yl)diazenyl]-1*H*-pyrazol-1-yl}-1,3,5-triazine-2,4(1*H*,3*H*)-dione-1-methylpyrrolidin-2-one-water (1/1/1)

H. Shibata and J. Mizuguchi

Comment

Azo pigments play an important role as colorants in the imaging and printing industries (Herbst & Hunger, 2004). Compound (I), $C_{13}H_{16}N_9O_2SC_5H_7NOH_2O$, is a monoazo pigment solvated with an *N*-methyl-2-pyrrolidone (NMP) molecule and water. The background of the present study is set out in our paper on the Na(I) complex with the closely related bis-azo compound as a ligand (Shibata & Mizuguchi, 2010). We report here on the structure of a Na⁺-free monoazo compound isolated from the same reaction mixture that produced the Na(I) complex.

Fig. 1 shows the *ORTEP* plot of I. The six-membered C1–C3,N1–N3 and two five-membered C4–C6,N4,N5 and S1,C7,C8,N8,N9 rings together with the N6–N7 azo linkage lie in a plane (rms deviation for the non-H atoms 0.0256Å) with a methyl group from the *t*-butyl substituent on the pyrazol ring above and below that plane. The formation of three in-tramolecular hydrogen bonds: N2–H2···N5, N10–H10M···N7, and N10–H10N···N3, Table 1, stabilises this planar conformation. The O4 atom of the water molecule is nearly on the same plane of the monoazo molecule: the dihedral angle between the planes N10/C6/H10M/H10M and O4/N10/H10M/H10N: 1.0 (1)°. However, the best fit planes through the NMP solvent molecule (C14A–C17A/N11A/O5A) and that of the water molecules are hydrogen bonded to the O3A or O3B atoms of the disordered NMP molecule though O4–H4A···O3 hydrogen bonds. In turn, the O4 atom is hydrogen-bonded to both N7 and N8. At both ends of the long molecular axis of the main molecule, there are intermolecular N1–H1···N9 hydrogen bonds. These form a one-dimensional polymer chain on the molecular plane along the long molecular axis: <110> or <1-10> direction.

As shown in Fig. 2, the monoazo molecules are alternately stacked along the <010> direction in such a way to cancel their dipole moments so as to electrostatically stabilize themselves in the crystal. Each alternating pair is linked through a set of three-consecutive intermolecular hydrogen bonds. On one side of the molecule: N2—H2 (triazine ring)···O3Aⁱ or O3Bⁱ (NMP), O3Aⁱ or O3Bⁱ (NMP)···H4Aⁱ—O4ⁱ (water), and O4ⁱ(water)···H10Mⁱ—N10ⁱ (amino group) [symmetry code: (i) (-x+1/2, -y+1/2, -z+1)]. An equivalent set of H-bonding interactions are found at the opposite sides of the molecules.

Experimental

The title compound was synthesized as described by Nagata *et al.* (2009). The structure reported here is of the Na(I) cation free product which made up approximately 20% of the product mixture by emission spectrochemical analysis. A single crystal suitable for X-ray analysis was grown from a solution in *N*-methy-2-pyrrolidone prepared at 100 °C. Needle shaped crystals were obtained after standing for one week.

Refinement

The entire NMP molecule was disordered over two sites (C14A—C18A/N11A/O3A and C14B—C18B/N11B/O3B) with occupancies of 0.488 (5) and 0.512 (5), respectively. These non-H atoms were refined anisotropically. The occupancies extend to the associated H atoms. All H atoms were placed in geometrically idealized position and constrained to ride on their parent atoms, with C—H in CH₂ = 0.99, and C—H in CH₃ = 0.98 Å, and $U_{iso}(H) = 1.2$ and 1.5 $U_{eq}(C)$, respectively, and with O—H = 0.88 Å and $U_{iso}(H) = 1.2$. The low theta fraction is due to a weakly diffracting crystal.

Figures

Fig. 1. The asymmetric unit of I. Hydrogen atoms except for those involved in hydrogen bonds (dotted lines) are omitted for clarity.

Fig. 2. Molecular stack along the <010> axis. Symmetry code: (-x+1/2, -y+1/2, -z+1). Hydrogen bonds are drawn as dotted lines.

6-{5-Amino-3-*tert*-butyl-4-[(*E*)-(3-methyl-1,2,4-thiadiazol-5- yl)diazenyl]-1*H*-pyrazol-1-yl}-1,3,5-triazine-2,4(1*H*,3*H*)- dione–1-methylpyrrolidin-2-one–water (1/1/1)

F(000) = 2080.00

 $\theta = 3.2 - 68.2^{\circ}$

 $\mu = 1.70 \text{ mm}^{-1}$ T = 93 K

Needle, yellow

 $0.50 \times 0.10 \times 0.10 \text{ mm}$

 $D_{\rm x} = 1.431 {\rm Mg m}^{-3}$

Cu K α radiation, $\lambda = 1.54187$ Å

Cell parameters from 23604 reflections

Crystal data

C₁₃H₁₆N₁₀O₂S·C₅H₉NO·H₂O $M_r = 493.54$ Monoclinic, C2/c Hall symbol: -C 2yc a = 27.8283 (5) Å b = 7.0269 (1) Å c = 23.4417 (4) Å $\beta = 91.3430$ (7)° V = 4582.69 (13) Å³ Z = 8

Data collection

Rigaku R-AXIS RAPID diffractometer	3083 reflections with $F^2 > 2\sigma(F^2)$
Detector resolution: 10.00 pixels mm ⁻¹	$R_{\rm int} = 0.000$
ω scans	$\theta_{\rm max} = 68.2^{\circ}$
Absorption correction: multi-scan	$h = 0 \rightarrow 33$

(ABSCOR; Higashi, 1995)	
$T_{\min} = 0.529, T_{\max} = 0.844$	$k = 0 \rightarrow 7$
3977 measured reflections	$l = -28 \rightarrow 28$
3977 independent reflections	

Refinement

Refinement on F^2	84 restraints
$R[F^2 > 2\sigma(F^2)] = 0.049$	H-atom parameters constrained
$wR(F^2) = 0.150$	$w = 1/[\sigma^2(F_o^2) + (0.0944P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.13	$(\Delta/\sigma)_{max} < 0.001$
3977 reflections	$\Delta \rho_{max} = 0.39 \text{ e } \text{\AA}^{-3}$
347 parameters	$\Delta \rho_{\rm min} = -0.35 \text{ e Å}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor wR and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) etc. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	у	Z	$U_{\rm iso}*/U_{\rm eq}$	Occ. (<1)
S1	0.07691 (2)	0.68241 (9)	0.52778 (2)	0.02961 (19)	
01	0.40973 (6)	0.2937 (3)	0.41323 (7)	0.0373 (5)	
N1	0.43390 (7)	0.3073 (3)	0.50624 (9)	0.0308 (5)	
H1N	0.4631	0.2738	0.4965	0.037*	
N2	0.37906 (7)	0.3899 (3)	0.57444 (8)	0.0299 (5)	
H2	0.3705	0.4104	0.6098	0.036*	
N3	0.35360 (7)	0.3813 (3)	0.47740 (8)	0.0282 (5)	
N4	0.30101 (7)	0.4672 (3)	0.54684 (8)	0.0289 (5)	
N5	0.29244 (7)	0.5038 (3)	0.60491 (8)	0.0300 (5)	
N6	0.17773 (7)	0.5903 (3)	0.53920 (8)	0.0283 (5)	
N7	0.16607 (7)	0.5794 (3)	0.48524 (8)	0.0299 (5)	
N8	0.09905 (7)	0.6256 (3)	0.42446 (9)	0.0332 (5)	
N9	0.03348 (7)	0.7075 (3)	0.47827 (9)	0.0327 (5)	
N10	0.25877 (7)	0.4604 (3)	0.45724 (8)	0.0292 (5)	
H10N	0.2847	0.4226	0.4397	0.035*	
H10M	0.2317	0.4780	0.4377	0.035*	
C1	0.39937 (8)	0.3258 (4)	0.46226 (11)	0.0288 (5)	
C2	0.42627 (9)	0.3368 (4)	0.56318 (11)	0.0308 (6)	

C3	0.34649 (8)	0.4099 (4)	0.53120 (10)	0.0276 (5)	
C4	0.24716 (8)	0.5503 (4)	0.60692 (10)	0.0281 (5)	
C5	0.22433 (8)	0.5469 (4)	0.55086 (10)	0.0285 (6)	
C6	0.26045 (9)	0.4907 (4)	0.51269 (10)	0.0286 (5)	
C7	0.11800 (9)	0.6252 (4)	0.47621 (10)	0.0292 (5)	
C8	0.05135 (9)	0.6725 (4)	0.42785 (11)	0.0331 (6)	
C9	0.02131 (11)	0.6866 (6)	0.37484 (13)	0.0563 (9)	
H9A	-0.0123	0.7067	0.3847	0.084*	
H9B	0.0241	0.5686	0.3529	0.084*	
H9C	0.0324	0.7939	0.3519	0.084*	
C10	0.22345 (9)	0.5893 (4)	0.66330 (11)	0.0321 (6)	
C11	0.26138 (9)	0.5910 (4)	0.71164 (11)	0.0382 (6)	
H11A	0.2841	0.6953	0.7055	0.057*	
H11B	0.2787	0.4696	0.7121	0.057*	
H11C	0.2456	0.6092	0.7482	0.057*	
C12	0.19714 (9)	0.7813 (4)	0.66161 (11)	0.0384 (7)	
H12A	0.1812	0.8021	0.6980	0.058*	
H12B	0.1730	0.7807	0.6305	0.058*	
H12C	0.2203	0.8836	0.6553	0.058*	
C13	0.18754 (9)	0.4262 (5)	0.67302 (11)	0.0412 (7)	
H13A	0.1714	0.4464	0.7092	0.062*	
H13B	0.2048	0.3047	0.6744	0.062*	
H13C	0.1636	0.4239	0.6417	0.062*	
02	0.45672 (6)	0.3194 (3)	0.60030 (8)	0.0383 (5)	
O4	0.18713 (7)	0.4753 (3)	0.35961 (8)	0.0463 (5)	
H4A	0.1719	0.3757	0.3430	0.056*	
H4B	0.1611	0.5393	0.3707	0.056*	
O3A	0.13169 (17)	0.1331 (6)	0.30823 (16)	0.0335 (13)	0.488 (5)
C14A	0.10177 (11)	0.1786 (4)	0.27041 (11)	0.0290 (15)	0.488 (5)
C15A	0.07874 (15)	0.3737 (4)	0.25815 (16)	0.0457 (16)	0.488 (5)
H15A	0.1031	0.4764	0.2596	0.055*	0.488 (5)
H15B	0.0533	0.4025	0.2857	0.055*	0.488 (5)
C16A	0.05744 (16)	0.3497 (5)	0.19745 (16)	0.0485 (17)	0.488 (5)
H16A	0.0273	0.4232	0.1926	0.058*	0.488 (5)
H16B	0.0805	0.3930	0.1687	0.058*	0.488 (5)
C17A	0.04784 (13)	0.1366 (5)	0.19163 (14)	0.0356 (16)	0.488 (5)
H17A	0.0145	0.1050	0.2021	0.043*	0.488 (5)
H17B	0.0534	0.0923	0.1522	0.043*	0.488 (5)
N11A	0.08266 (10)	0.0533 (4)	0.23192 (11)	0.0322 (12)	0.488 (5)
C18A	0.09354 (17)	-0.1506 (4)	0.23177 (18)	0.0488 (17)	0.488 (5)
H18A	0.1050	-0.1876	0.1941	0.073*	0.488 (5)
H18B	0.0644	-0.2227	0.2403	0.073*	0.488 (5)
H18C	0.1185	-0.1780	0.2608	0.073*	0.488 (5)
O3B	0.12735 (16)	0.2045 (5)	0.31146 (16)	0.0311 (12)	0.512 (5)
C14B	0.10602 (10)	0.1110 (4)	0.27360 (11)	0.0333 (16)	0.512 (5)
C15B	0.10728 (13)	-0.1044 (4)	0.26215 (16)	0.0413 (14)	0.512 (5)
H15C	0.1044	-0.1776	0.2980	0.050*	0.512 (5)
H15D	0.1373	-0.1416	0.2433	0.050*	0.512 (5)
C16B	0.06328 (14)	-0.1355 (4)	0.22232 (17)	0.0423 (14)	0.512 (5)

H16C	0.0695	-0.2378	0.1944	0.051*	0.512 (5)
H16D	0.0347	-0.1699	0.2444	0.051*	0.512 (5)
C17B	0.05587 (13)	0.0551 (5)	0.19218 (13)	0.0394 (16)	0.512 (5)
H17C	0.0727	0.0584	0.1554	0.047*	0.512 (5)
H17D	0.0213	0.0814	0.1851	0.047*	0.512 (5)
N11B	0.07691 (9)	0.1908 (3)	0.23277 (10)	0.0354 (12)	0.512 (5)
C18B	0.06870 (15)	0.3959 (4)	0.22719 (17)	0.0419 (15)	0.512 (5)
H18D	0.0343	0.4226	0.2301	0.063*	0.512 (5)
H18E	0.0799	0.4393	0.1901	0.063*	0.512 (5)
H18F	0.0864	0.4630	0.2577	0.063*	0.512 (5)

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	0.0231 (3)	0.0402 (4)	0.0255 (3)	0.0041 (2)	0.0000 (2)	-0.0017 (3)
O1	0.0262 (9)	0.0595 (13)	0.0264 (9)	0.0060 (8)	0.0017 (7)	-0.0019 (8)
N1	0.0183 (10)	0.0433 (13)	0.0307 (11)	0.0024 (9)	0.0007 (8)	-0.0018 (9)
N2	0.0233 (10)	0.0437 (13)	0.0227 (10)	0.0029 (9)	-0.0004 (8)	-0.0026 (9)
N3	0.0214 (10)	0.0370 (12)	0.0262 (11)	0.0010 (8)	0.0007 (8)	0.0011 (9)
N4	0.0228 (10)	0.0396 (13)	0.0241 (11)	0.0026 (9)	0.0001 (8)	-0.0009 (9)
N5	0.0244 (11)	0.0404 (13)	0.0253 (11)	0.0031 (9)	0.0021 (8)	-0.0026 (9)
N6	0.0259 (10)	0.0317 (12)	0.0271 (11)	0.0010 (8)	-0.0007 (8)	0.0004 (9)
N7	0.0232 (10)	0.0397 (13)	0.0265 (11)	0.0024 (9)	-0.0023 (8)	0.0000 (9)
N8	0.0266 (11)	0.0457 (14)	0.0272 (11)	0.0074 (9)	-0.0014 (9)	-0.0016 (10)
N9	0.0250 (11)	0.0437 (14)	0.0291 (11)	0.0057 (9)	-0.0020 (8)	-0.0013 (9)
N10	0.0243 (10)	0.0402 (13)	0.0231 (10)	0.0054 (9)	-0.0001 (8)	-0.0008 (9)
C1	0.0230 (12)	0.0336 (15)	0.0298 (13)	0.0001 (10)	0.0003 (10)	0.0012 (10)
C2	0.0238 (12)	0.0367 (15)	0.0318 (13)	0.0011 (10)	-0.0006 (10)	-0.0001 (11)
C3	0.0212 (12)	0.0323 (14)	0.0294 (13)	0.0005 (9)	-0.0003 (9)	0.0002 (10)
C4	0.0239 (12)	0.0338 (14)	0.0266 (13)	0.0028 (10)	0.0002 (9)	0.0001 (10)
C5	0.0260 (12)	0.0334 (14)	0.0260 (12)	0.0043 (10)	-0.0009 (10)	-0.0002 (10)
C6	0.0251 (12)	0.0320 (14)	0.0287 (13)	0.0008 (10)	-0.0019 (9)	0.0015 (10)
C7	0.0270 (13)	0.0337 (14)	0.0269 (12)	0.0050 (10)	0.0012 (10)	-0.0010 (10)
C8	0.0286 (13)	0.0426 (16)	0.0279 (13)	0.0079 (11)	-0.0029 (10)	-0.0014 (11)
C9	0.0387 (16)	0.097 (3)	0.0328 (16)	0.0236 (17)	-0.0070 (13)	-0.0088 (16)
C10	0.0233 (12)	0.0473 (17)	0.0258 (13)	0.0029 (11)	0.0035 (10)	-0.0005 (11)
C11	0.0324 (14)	0.0559 (18)	0.0264 (13)	0.0058 (12)	0.0007 (10)	-0.0014 (12)
C12	0.0321 (14)	0.0549 (19)	0.0282 (14)	0.0083 (12)	0.0016 (11)	-0.0045 (12)
C13	0.0325 (15)	0.059 (2)	0.0319 (15)	-0.0042 (13)	0.0063 (11)	0.0026 (13)
O2	0.0251 (9)	0.0573 (13)	0.0323 (10)	0.0053 (8)	-0.0068 (7)	-0.0020 (8)
O4	0.0331 (10)	0.0676 (15)	0.0383 (11)	0.0036 (9)	0.0018 (8)	-0.0084 (10)
O3A	0.030 (2)	0.051 (3)	0.020 (2)	0.018 (2)	-0.0027 (17)	-0.018 (2)
C14A	0.016 (2)	0.051 (3)	0.021 (3)	0.004 (2)	-0.001 (2)	0.001 (2)
C15A	0.040 (3)	0.048 (4)	0.049 (4)	0.008 (3)	0.001 (3)	-0.001 (3)
C16A	0.053 (4)	0.052 (4)	0.040 (3)	0.012 (3)	-0.007 (3)	0.005 (3)
C17A	0.031 (3)	0.044 (4)	0.032 (3)	0.007 (3)	-0.004 (2)	-0.004 (3)
N11A	0.031 (2)	0.041 (3)	0.024 (2)	0.002 (2)	-0.0028 (18)	-0.001 (2)
C18A	0.060 (4)	0.044 (4)	0.042 (4)	0.008 (3)	0.001 (3)	-0.004 (3)

O3B	0.032 (2)	0.030 (3)	0.031 (2)	0.0077 (19)	-0.0010 (18)	-0.0098 (18)
C14B	0.032 (3)	0.039 (3)	0.030 (3)	-0.001 (2)	0.012 (3)	-0.002 (2)
C15B	0.040 (3)	0.041 (3)	0.043 (3)	-0.001 (2)	-0.004 (3)	0.000 (3)
C16B	0.043 (3)	0.043 (3)	0.040 (3)	-0.006 (3)	-0.001 (3)	-0.003 (2)
C17B	0.032 (3)	0.051 (4)	0.035 (3)	0.004 (3)	-0.003 (2)	-0.007 (3)
N11B	0.030 (2)	0.043 (3)	0.032 (2)	-0.0011 (19)	-0.0004 (19)	0.000 (2)
C18B	0.042 (3)	0.043 (3)	0.040 (4)	0.000 (3)	-0.001 (3)	0.002 (3)
Goometrie navar	matars (Å °)					
Geometric param	neiers (A,)					
S1—N9		1.665 (2)	C12—F	I12B	0.9800)
S1—C7		1.731 (2)	C12—F	112C	0.9800)
OI—CI		1.213 (3)	CI3—F	II3A	0.9800)
NI—C2		1.372 (3)	CI3—F	113B	0.9800)
NI-CI		1.399 (3)	C13—F	113C	0.9800)
NI—HIN		0.8800	04—H4	4A	0.9018	5
N2—C3		1.351 (3)	04—H4	1 В	0.8962	
N2		1.397 (3)	03A—0	U14A	1.2437	
$N_2 = \Pi_2$		1.207(2)	C14A—	-NIIA C15A	1.5005	
$N_3 = C_3$		1.297 (3)	C14A—	-CISA C16A	1.55/5)
NJ-CI		1.360(3) 1.278(2)	CI5A	-C10A	1.5570	,
N4-C3		1.378(3)	C15A	-115A H15B	0.9900)
N4—C3 N4—N5		1.383(3)	C16A-	-0174	1 5263	
N5-C4		1.411(3) 1 304(3)	C16A-	-H16A	0.9900	,)
N6—N7		1.301(3)	C16A-	-H16B	0.9900)
N6-C5		1 354 (3)	C17A-	-N11A	1 4598	
N7-C7		1.388 (3)	C17A-	-H17A	0.9900)
N8—C7		1.311 (3)	C17A-	-H17B	0.9900)
N8—C8		1.372 (3)	N11A-	-C18A	1.4644	Ļ
N9—C8		1.316 (3)	C18A-	-H18A	0.9800)
N10—C6		1.317 (3)	C18A—	-H18B	0.9800)
N10—H10N		0.8800	C18A—	-H18C	0.9800)
N10—H10M		0.8800	O3B—(C14B	1.2436	5
C2—O2		1.207 (3)	C14B-	-N11B	1.3603	;
C4—C5		1.446 (3)	C14B-	-C15B	1.5375	5
C4—C10		1.516 (3)	C15B-	-C16B	1.5379)
C5—C6		1.417 (3)	C15B—	-H15C	0.9900)
С8—С9		1.485 (3)	C15B—	-H15D	0.9900)
С9—Н9А		0.9800	C16B—	-C17B	1.5263	;
С9—Н9В		0.9800	C16B—	-H16C	0.9900)
С9—Н9С		0.9800	C16B—	-H16D	0.9900)
C10-C11		1.530 (3)	C17B—	-N11B	1.4599)
C10—C12		1.535 (4)	C17B—	-H17C	0.9900)
C10—C13		1.541 (4)	C17B—	-H17D	0.9900)
C11—H11A		0.9800	N11B—	-C18B	1.4644	Ļ
C11—H11B		0.9800	C18B—	-H18D	0.9800)
C11—H11C		0.9800	C18B—	-H18E	0.9800)
C12—H12A		0.9800	C18B—	-H18F	0.9800)

N9—S1—C7	91.05 (11)	C10-C12-H12C	109.5
C2—N1—C1	125.7 (2)	H12A—C12—H12C	109.5
C2—N1—H1N	117.1	H12B—C12—H12C	109.5
C1—N1—H1N	117.1	C10-C13-H13A	109.5
C3—N2—C2	120.2 (2)	C10-C13-H13B	109.5
C3—N2—H2	119.9	H13A—C13—H13B	109.5
C2—N2—H2	119.9	C10-C13-H13C	109.5
C3—N3—C1	117.1 (2)	H13A—C13—H13C	109.5
C6—N4—C3	128.4 (2)	H13B—C13—H13C	109.5
C6—N4—N5	112.57 (19)	H4A—O4—H4B	98.0
C3—N4—N5	118.97 (19)	O3A—C14A—N11A	123.4
C4—N5—N4	105.43 (19)	O3A—C14A—C15A	129.2
N7—N6—C5	113.5 (2)	N11A—C14A—C15A	107.4
N6—N7—C7	110.6 (2)	C14A—C15A—C16A	103.0
C7—N8—C8	108.4 (2)	C14A—C15A—H15A	111.2
C8—N9—S1	108.82 (17)	C16A—C15A—H15A	111.2
C6—N10—H10N	120.0	C14A—C15A—H15B	111.2
C6—N10—H10M	120.0	C16A—C15A—H15B	111.2
H10N—N10—H10M	120.0	H15A—C15A—H15B	109.1
O1—C1—N3	122.4 (2)	C17A—C16A—C15A	104.7
01—C1—N1	120.5 (2)	C17A—C16A—H16A	110.8
N3—C1—N1	117.2 (2)	C15A—C16A—H16A	110.8
O2—C2—N1	124.3 (2)	C17A—C16A—H16B	110.8
O2—C2—N2	122.6 (2)	C15A—C16A—H16B	110.8
N1—C2—N2	113.1 (2)	H16A—C16A—H16B	108.9
N3—C3—N2	126.8 (2)	N11A—C17A—C16A	102.9
N3—C3—N4	117.6 (2)	N11A—C17A—H17A	111.2
N2—C3—N4	115.6 (2)	C16A—C17A—H17A	111.2
N5	111.6 (2)	N11A—C17A—H17B	111.2
N5-C4-C10	121.2 (2)	C16A—C17A—H17B	111.2
C5—C4—C10	127.2 (2)	H17A—C17A—H17B	109.1
N6—C5—C6	128.7 (2)	C14A—N11A—C17A	114.4
N6—C5—C4	125.3 (2)	C14A—N11A—C18A	123.9
C6—C5—C4	106.0 (2)	C17A—N11A—C18A	121.7
N10-C6-N4	124.3 (2)	O3B—C14B—N11B	123.4
N10—C6—C5	131.2 (2)	O3B—C14B—C15B	129.2
N4—C6—C5	104.5 (2)	N11B-C14B-C15B	107.4
N8—C7—N7	120.5 (2)	C14B—C15B—C16B	103.0
N8—C7—S1	112.82 (18)	C14B—C15B—H15C	111.2
N7—C7—S1	126.71 (18)	C16B—C15B—H15C	111.2
N9—C8—N8	118.9 (2)	C14B—C15B—H15D	111.2
N9—C8—C9	121.5 (2)	C16B—C15B—H15D	111.2
N8—C8—C9	119.6 (2)	H15C-C15B-H15D	109.1
С8—С9—Н9А	109.5	C17B—C16B—C15B	104.7
С8—С9—Н9В	109.5	C17B—C16B—H16C	110.8
Н9А—С9—Н9В	109.5	C15B—C16B—H16C	110.8
С8—С9—Н9С	109.5	C17B—C16B—H16D	110.8
Н9А—С9—Н9С	109.5	C15B—C16B—H16D	110.8
Н9В—С9—Н9С	109.5	H16C—C16B—H16D	108.9

C4—C10—C11	109.9 (2)	N11B-C17B-C16B	102.9
C4—C10—C12	110.7 (2)	N11B—C17B—H17C	111.2
C11—C10—C12	109.4 (2)	C16B—C17B—H17C	111.2
C4—C10—C13	107.0 (2)	N11B—C17B—H17D	111.2
C11—C10—C13	109.6 (2)	C16B—C17B—H17D	111.2
C12—C10—C13	110.3 (2)	H17C—C17B—H17D	109.1
C10—C11—H11A	109.5	C14B—N11B—C17B	114.4
C10—C11—H11B	109.5	C14B—N11B—C18B	123.9
H11A—C11—H11B	109.5	C17B—N11B—C18B	121.7
C10—C11—H11C	109.5	N11B—C18B—H18D	109.5
H11A—C11—H11C	109.5	N11B—C18B—H18E	109.5
H11B—C11—H11C	109.5	H18D—C18B—H18E	109.5
C10—C12—H12A	109.5	N11B—C18B—H18F	109.5
C10—C12—H12B	109.5	H18D—C18B—H18F	109.5
H12A—C12—H12B	109.5	H18E—C18B—H18F	109.5
C6—N4—N5—C4	-0.2 (3)	C8—N8—C7—N7	179.1 (2)
C3—N4—N5—C4	-178.7 (2)	C8—N8—C7—S1	0.0 (3)
C5—N6—N7—C7	180.0 (2)	N6—N7—C7—N8	179.1 (2)
C7—S1—N9—C8	0.2 (2)	N6—N7—C7—S1	-2.0(3)
C3—N3—C1—O1	179.3 (3)	N9—S1—C7—N8	-0.1(2)
C3—N3—C1—N1	-0.6 (3)	N9—S1—C7—N7	-179.1 (2)
C2—N1—C1—O1	-178.9 (3)	S1—N9—C8—N8	-0.2 (3)
C2—N1—C1—N3	0.9 (4)	S1—N9—C8—C9	-179.0 (2)
C1—N1—C2—O2	179.8 (2)	C7—N8—C8—N9	0.1 (4)
C1—N1—C2—N2	-0.2 (4)	C7—N8—C8—C9	178.9 (3)
C3—N2—C2—O2	179.1 (2)	N5-C4-C10-C11	7.4 (4)
C3—N2—C2—N1	-0.9 (3)	C5-C4-C10-C11	-176.5 (3)
C1—N3—C3—N2	-0.5 (4)	N5-C4-C10-C12	128.4 (3)
C1—N3—C3—N4	179.4 (2)	C5-C4-C10-C12	-55.6 (3)
C2—N2—C3—N3	1.3 (4)	N5-C4-C10-C13	-111.4(3)
C2—N2—C3—N4	-178.6 (2)	C5-C4-C10-C13	64.6 (3)
C6—N4—C3—N3	3.2 (4)	O3A—C14A—C15A—C16A	164.1
N5—N4—C3—N3	-178.5 (2)	N11A—C14A—C15A—C16A	-17.2
C6—N4—C3—N2	-176.8(2)	C14A—C15A—C16A—C17A	26.5
N5—N4—C3—N2	1.4 (3)	C15A—C16A—C17A—N11A	-26.1
N4—N5—C4—C5	-0.2 (3)	O3A—C14A—N11A—C17A	179.4
N4—N5—C4—C10	176.4 (2)	C15A—C14A—N11A—C17A	0.6
N7—N6—C5—C6	-0.9 (4)	O3A—C14A—N11A—C18A	2.4
N7—N6—C5—C4	179.0 (2)	C15A—C14A—N11A—C18A	-176.4
N5-C4-C5-N6	-179.3(2)	C16A—C17A—N11A—C14A	16.4
C10-C4-C5-N6	4.3 (4)	C16A—C17A—N11A—C18A	-166.5
N5—C4—C5—C6	0.5 (3)	O3B—C14B—C15B—C16B	164.0
C10-C4-C5-C6	-175.8 (2)	N11B—C14B—C15B—C16B	-17.2
C3—N4—C6—N10	0.1 (4)	C14B—C15B—C16B—C17B	26.5
N5—N4—C6—N10	-178.2(2)	C15B—C16B—C17B—N11B	-26.1
C3—N4—C6—C5	178.9 (2)	O3B—C14B—N11B—C17B	179.4
N5—N4—C6—C5	0.5 (3)	C15B—C14B—N11B—C17B	0.6
N6—C5—C6—N10	-2.2 (5)	O3B—C14B—N11B—C18B	2.4
C4—C5—C6—N10	178.0 (3)	C15B—C14B—N11B—C18B	-176.4
	× /		

179.2 (3)	C16B—C17B—N11B—C14B		16.4
-0.6 (3)	C16B—C17B—N11B—C18B		-166.5
<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
0.902	2.186	3.087 (4)	175.8
0.902	1.868	2.752 (4)	166.3
0.896	2.700	3.104 (2)	108.5
0.896	2.245	3.100 (2)	159.4
0.88	2.07	2.947 (2)	176.
0.88	2.27	2.654 (2)	106.
0.88	1.95	2.778 (4)	157.
0.88	2.01	2.766 (4)	143.
0.88	2.11	2.727 (2)	126.
0.88	2.19	3.002 (2)	154.
0.88	2.28	2.804 (2)	119.
	179.2 (3) -0.6 (3) D—H 0.902 0.902 0.896 0.896 0.896 0.88 0.88 0.88 0.88 0.88 0.88 0.88 0.8	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Symmetry codes: (i) *x*+1/2, *y*-1/2, *z*; (ii) -*x*+1/2, -*y*+1/2, -*z*+1.

